Analysis of a one-dimensional free boundary flow problem

نویسندگان

  • Alexandre Caboussat
  • Jacques Rappaz
چکیده

A one-dimensional free surface problem is considered. It consists in Burgers’ equation with an additional diffusion term on a moving interval. The well-posedness of the problem is investigated and existence and uniqueness results are obtained locally in time. A semi-discretization in space with a piecewise linear finite element method is considered. A priori and a posteriori error estimates are given for the semi-discretization in space. A time splitting scheme allows to obtain numerical results in agreement with the theoretical investigations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY

This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed

متن کامل

Nonlinear Two-Phase Stefan Problem

In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.

متن کامل

UNIQUENESS OF SOLUTION FOR A CLASS OF STEFAN PROBLEMS

This paper deals with a theoretical mathematical analysis of one-dimensional solidification problem, in which kinetic undercooling is incorporated into the This temperature condition at the interface. A model problem with nonlinear kinetic law is considered. We prove a local result intimate for the uniqueness of solution of the corresponding free boundary problem.

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

Three-Dimensional Boundary Layer Flow and Heat Transfer of a Dusty Fluid Towards a Stretching Sheet with Convective Boundary Conditions

The steady three-dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions is investigated by using similarity solution approach. The free stream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are reduced into ordinary differential equations b...

متن کامل

Some properties of band matrix and its application to the numerical solution one-dimensional Bratu's problem

A Class of new methods based on a septic non-polynomial spline function for the numerical solution one-dimensional Bratu's problem are presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Associated boundary f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 101  شماره 

صفحات  -

تاریخ انتشار 2005